Existence of Admissible Rational Chebyshev Approximations on Subsets

Communicated by E. W. Cheney

The problem of rational approximation on compact sets is discussed in [1]. A rational function $R(A) = P(A, \cdot)/Q(A, \cdot)$ is called *admissible* on X if Q(A, x) > 0 for all $x \in X$. For a given f there may not exist a best approximation on X by admissible rational functions, and existence on X does not guarantee existence on finite subsets. If $\{A_k\} \to A$ as $k \to \infty$ and if R(A) is admissible, then $R(A_k)$ is also admissible for all sufficiently large k. Thus we can append to Corollaries 2 and 3 of [1] the words "and $R(A_k)$ is admissible for all sufficiently large k."

Recall now that the density of a set Y in a metric space X is defined to be $\max_{y \in Y} \min_{x \in X} d(x, y)$.

THEOREM. Let X be a metric space, and let f be a function which has a unique best admissible approximation R(A). Assume that R(A) cannot be represented as R(C), where $Q(C, \cdot)$ has a zero. Then there exists a $\delta > 0$ such that for any compact Y of density less than δ , each best approximation to f on Y is admissible on X.

Proof. If the result is false, then there exist sets X_1 , X_2 ,... such that: (1) for any $x \in X$ there are points $x_k \in X_k$ converging to x, and (2) there is a best approximation $R(A_k)$ to f on X_k which is not admissible. This contradicts the modified Corollary 2.

A special case of this theorem can be obtained by replacing the first sentence by "Let f have R(A) as an admissible best approximation, and assume that S(A) is an (n + m - 1)-dimensional Haar subspace." In the case of polynomial rational functions on an interval $[\alpha, \beta]$, we have the following corollary.

COROLLARY. Let f have a nondegenerate best approximation by polynomial rational functions from $R_m{}^n[\alpha, \beta]$. Then there exists $\delta > 0$ such that if the density of Y is less than δ , there is a (unique) best approximation by admissible rationals to f on Y.

Proof. Let R(A) be best from $R_m^n[\alpha, \beta]$ on $[\alpha, \beta]$. As it is nondegenerate, S(A) is a Haar subspace of dimension n + m - 1. By our previous results,

any best approximation by rationals on Y is admissible on $[\alpha, \beta]$. It is unique as a best approximation from $R_m^n[\alpha, \beta]$ on Y is unique.

The following example shows that the representation or nondegeneracy hypotheses of the previous results cannot be deleted.

EXAMPLE. Let X = [-1, 1], f(x) = x, $R(A, x) = a_1/(a_2 + a_3x)$, $X_k = \{-1 + 1/k, -1 + 2/k, ..., (k - 1)/k, 1\}$. As f alternates once on X, 0 is the unique best approximation to f on X. There is no best admissible approximation to f on X_k . If it existed, it would have to be 1 at 1 and zero on the rest of X_k . But such a function is not admissible.

Reference

1. C. B. DUNHAM, Rational Chebyshev Approximation on Subsets, J. Approximation Theory 1 (1968), 484-487.

CHARLES B. DUNHAM

Computer Science Department University of Western Ontario London, Canada